Effects of Canine and Murine Mesenchymal Stromal Cell Transplantation on Peripheral Nerve Regeneration

نویسندگان

  • Diego Noe Rodriguez Sanchez
  • Matheus Bertanha
  • Thiago Dias Fernandes
  • Luiz Antônio de Lima Resende
  • Elenice Deffune
  • Rogério Martins Amorim
چکیده

Background and Objectives Maintaining a permissive microenvironment is essential for adequate nerve regeneration. Cell-based therapy has the potential based cell replacement and promotion of axonal growth. The adipose tissue derived mesenchymal stromal cells (Ad-MSC) attract interest because neuroregenerative and anti-inflammatory properties. The aim of this study was to evaluate the effects of canine and murine Ad-MSC transplantation on the sciatic nerve regeneration. Methods Forty Wistar rats were divided randomly into: control group - CG (n=8); denervated group - DG (n=8); decellularized vein group - VG (n=8); decellularized vein+canine MSC-cMSC (n=8); descellularized vein+murine MSC-mMSC (n=8). After 10-mm nerve gap, the tubulation technique was performed with decellularized vein filled with 106 MSC labeled with quantum dots (Qtracker 665®). The sciatic nerve functional index (SFI) and electroneuromyography (ENMG) measurements were carried and morphometric and immunohistochemistry analysis of the tissue. Results The SFI values were higher in the cMSC and mMSC groups at day 27 (p<0.020) and day 35 (p<0.011). The ENMG analysis also revealed better results in the mMSC group. Density, number, and total area of the fibers were increased in the mMSC and cMSC groups. Brain-derived neurotrophic factor BDNF and S-100 protein positive immunoreactivity showed a higher expression for both in the nerve of the mMSC and cMSC groups. The MSC labeled with quantum dots were detected at day 35, indicating neuronal survival long after the nerve damage. Conclusions Murine and canine Ad-MSC associated with decellularized vein scaffold had positive effects on sciatic nerve regeneration in rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model

Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that...

متن کامل

Intravenous Transplantation of Mesenchymal Stromal Cells to Enhance Peripheral Nerve Regeneration

Peripheral nerve injury is a common and devastating complication after trauma and can cause irreversible impairment or even complete functional loss of the affected limb. While peripheral nerve repair results in some axonal regeneration and functional recovery, the clinical outcome is not optimal and research continues to optimize functional recovery after nerve repair. Cell transplantation app...

متن کامل

Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve.

OBJECTIVE Bone marrow and umbilical cord stromal cells are multipotential stem cells that have the ability to produce growth factors that play an important role in survival and generation of axons. The goal of this study was to evaluate the effects of the two different mesenchymal stem cells on peripheral nerve regeneration. MATERIALS AND METHODS In this experimental study, a 10 mm segment of...

متن کامل

Evaluation of the Functional Recovery in Sciatic Nerve Injury following the Co-transplantation of Schwann and Bone Marrow Stromal Stem Cells in Rat

Introduction: Transplantation of bone marrow stromal cells (BMSCs) or Schwann cells (SCs) can increase axonal regeneration in peripheral nerve injuries. Based on our previous investigations, the goal of the present work was to examine the individual and synergistic effects of the two different cell types in sciatic nerve injury . We pursued to evaluate the effects of BMSCs and SCs co-transplant...

متن کامل

Augmenting Peripheral Nerve Regeneration Using Rat Hair Follicle Stem Cells (rHFSCs) in Rats

Introduction: Nowadays, cell therapy is the most advanced treatment of peripheral nerve injury. The aim of this study was to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats. Methods: The bulge region of the rat whisker was isolated and cultured. Morphological and biological features of the cultured bulge cells were ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017